Defining polynomial
\( x^{10} - 11 x^{5} + 847 \) |
Invariants
Base field: | $\Q_{11}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $5$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $8$ |
Discriminant root field: | $\Q_{11}(\sqrt{2})$ |
Root number: | $1$ |
$|\Gal(K/\Q_{ 11 })|$: | $10$ |
This field is Galois and abelian over $\Q_{11}.$ |
Intermediate fields
$\Q_{11}(\sqrt{2})$, 11.5.4.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{11}(\sqrt{2})$ $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{2} - x + 7 \) |
Relative Eisenstein polynomial: | $ x^{5} - 11 t \in\Q_{11}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $C_{10}$ (as 10T1) |
Inertia group: | Intransitive group isomorphic to $C_5$ |
Unramified degree: | $2$ |
Tame degree: | $5$ |
Wild slopes: | None |
Galois mean slope: | $4/5$ |
Galois splitting model: | $x^{10} - x^{9} + 2 x^{8} - 356 x^{7} + 828 x^{6} - 6778 x^{5} + 50883 x^{4} + 8829 x^{3} + 470116 x^{2} - 3813888 x + 5237847$ |