Defining polynomial
| \( x^{10} + 1331 x^{4} - 14641 x^{2} + 805255 \) |
Invariants
| Base field: | $\Q_{11}$ |
| Degree $d$ : | $10$ |
| Ramification exponent $e$ : | $2$ |
| Residue field degree $f$ : | $5$ |
| Discriminant exponent $c$ : | $5$ |
| Discriminant root field: | $\Q_{11}(\sqrt{11*})$ |
| Root number: | $i$ |
| $|\Gal(K/\Q_{ 11 })|$: | $10$ |
| This field is Galois and abelian over $\Q_{11}$. | |
Intermediate fields
| $\Q_{11}(\sqrt{11*})$, 11.5.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 11.5.0.1 $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{5} + x^{2} - x + 5 \) |
| Relative Eisenstein polynomial: | $ x^{2} - 11 t \in\Q_{11}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_{10}$ (as 10T1) |
| Inertia group: | Intransitive group isomorphic to $C_2$ |
| Unramified degree: | $5$ |
| Tame degree: | $2$ |
| Wild slopes: | None |
| Galois mean slope: | $1/2$ |
| Galois splitting model: | $x^{10} - 5 x^{9} + 5 x^{8} + 90 x^{6} - 148 x^{5} + 610 x^{4} - 175 x^{3} + 2325 x^{2} - 1625 x + 5965$ |