Properties

Label 109.4.2.1
Base \(\Q_{109}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)
Galois group $C_2^2$ (as 4T2)

Related objects

Learn more about

Defining polynomial

\( x^{4} + 1199 x^{2} + 427716 \)

Invariants

Base field: $\Q_{109}$
Degree $d$ : $4$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $2$
Discriminant root field: $\Q_{109}$
Root number: $-1$
$|\Gal(K/\Q_{ 109 })|$: $4$
This field is Galois and abelian over $\Q_{109}$.

Intermediate fields

$\Q_{109}(\sqrt{*})$, $\Q_{109}(\sqrt{109})$, $\Q_{109}(\sqrt{109*})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{109}(\sqrt{*})$ $\cong \Q_{109}(t)$ where $t$ is a root of \( x^{2} - x + 6 \)
Relative Eisenstein polynomial:$ x^{2} - 109 t^{2} \in\Q_{109}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2^2$ (as 4T2)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{4} + 1199 x^{2} + 427716$