Properties

Label 109.3.2.2
Base \(\Q_{109}\)
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)
Galois group $C_3$ (as 3T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{3} + 327\) Copy content Toggle raw display

Invariants

Base field: $\Q_{109}$
Degree $d$: $3$
Ramification exponent $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{109}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 109 }) }$: $3$
This field is Galois and abelian over $\Q_{109}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 109 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{109}$
Relative Eisenstein polynomial: \( x^{3} + 327 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 3z + 3$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_3$ (as 3T1)
Inertia group:$C_3$ (as 3T1)
Wild inertia group:$C_1$
Unramified degree:$1$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:$x^{3} - x^{2} - 254 x + 1639$