Properties

Label 103.8.0.1
Base \(\Q_{103}\)
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + x^{4} + 70 x^{3} + 71 x^{2} + 49 x + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{103}$
Degree $d$: $8$
Ramification exponent $e$: $1$
Residue field degree $f$: $8$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{103}(\sqrt{3})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 103 }) }$: $8$
This field is Galois and abelian over $\Q_{103}.$
Visible slopes:None

Intermediate fields

$\Q_{103}(\sqrt{3})$, 103.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:103.8.0.1 $\cong \Q_{103}(t)$ where $t$ is a root of \( x^{8} + x^{4} + 70 x^{3} + 71 x^{2} + 49 x + 5 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 103 \) $\ \in\Q_{103}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$8$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{8} - x^{7} + 5 x^{6} + 17 x^{5} - 46 x^{4} + 136 x^{3} + 320 x^{2} - 512 x + 4096$