Properties

Label 103.6.5.5
Base \(\Q_{103}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(5\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} + 824 \)

Invariants

Base field: $\Q_{103}$
Degree $d$ : $6$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $5$
Discriminant root field: $\Q_{103}(\sqrt{103*})$
Root number: $-i$
$|\Gal(K/\Q_{ 103 })|$: $6$
This field is Galois and abelian over $\Q_{103}$.

Intermediate fields

$\Q_{103}(\sqrt{103*})$, 103.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{103}$
Relative Eisenstein polynomial:\( x^{6} + 824 \)

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:$C_6$
Unramified degree:$1$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:$x^{6} - x^{5} + 9 x^{4} + 101 x^{3} + 129 x^{2} - 91 x + 1373$