Properties

Label 103.6.4.2
Base \(\Q_{103}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(4\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} - 103 x^{3} + 53045 \)

Invariants

Base field: $\Q_{103}$
Degree $d$ : $6$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $4$
Discriminant root field: $\Q_{103}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 103 })|$: $6$
This field is Galois and abelian over $\Q_{103}$.

Intermediate fields

$\Q_{103}(\sqrt{*})$, 103.3.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{103}(\sqrt{*})$ $\cong \Q_{103}(t)$ where $t$ is a root of \( x^{2} - x + 5 \)
Relative Eisenstein polynomial:$ x^{3} - 103 t \in\Q_{103}(t)[x]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:$x^{6} - x^{5} + x^{4} - 855 x^{3} + 7771 x^{2} + 60199 x + 201881$