Properties

Label 103.6.3.1
Base \(\Q_{103}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} - 206 x^{4} + 10609 x^{2} - 918983407 \)

Invariants

Base field: $\Q_{103}$
Degree $d$ : $6$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $3$
Discriminant root field: $\Q_{103}(\sqrt{103})$
Root number: $i$
$|\Gal(K/\Q_{ 103 })|$: $6$
This field is Galois and abelian over $\Q_{103}$.

Intermediate fields

$\Q_{103}(\sqrt{103})$, 103.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:103.3.0.1 $\cong \Q_{103}(t)$ where $t$ is a root of \( x^{3} - x + 29 \)
Relative Eisenstein polynomial:$ x^{2} - 103 t^{2} \in\Q_{103}(t)[x]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$3$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{6} - x^{5} - 181 x^{4} + 181 x^{3} + 9283 x^{2} - 9283 x - 113749$