Defining polynomial
| \( x^{4} + 505 x^{2} + 91809 \) |
Invariants
| Base field: | $\Q_{101}$ |
| Degree $d$ : | $4$ |
| Ramification exponent $e$ : | $2$ |
| Residue field degree $f$ : | $2$ |
| Discriminant exponent $c$ : | $2$ |
| Discriminant root field: | $\Q_{101}$ |
| Root number: | $-1$ |
| $|\Gal(K/\Q_{ 101 })|$: | $4$ |
| This field is Galois and abelian over $\Q_{101}$. | |
Intermediate fields
| $\Q_{101}(\sqrt{*})$, $\Q_{101}(\sqrt{101})$, $\Q_{101}(\sqrt{101*})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{101}(\sqrt{*})$ $\cong \Q_{101}(t)$ where $t$ is a root of \( x^{2} - x + 3 \) |
| Relative Eisenstein polynomial: | $ x^{2} - 101 t^{2} \in\Q_{101}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_2^2$ (as 4T2) |
| Inertia group: | Intransitive group isomorphic to $C_2$ |
| Unramified degree: | $2$ |
| Tame degree: | $2$ |
| Wild slopes: | None |
| Galois mean slope: | $1/2$ |
| Galois splitting model: | $x^{4} + 505 x^{2} + 91809$ |