## Defining polynomial

\( x^{2} - 101 \) |

## Invariants

Base field: | $\Q_{101}$ |

Degree $d$ : | $2$ |

Ramification exponent $e$ : | $2$ |

Residue field degree $f$ : | $1$ |

Discriminant exponent $c$ : | $1$ |

Discriminant root field: | $\Q_{101}(\sqrt{101})$ |

Root number: | $1$ |

$|\Gal(K/\Q_{ 101 })|$: | $2$ |

This field is Galois and abelian over $\Q_{101}$. |

## Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 101 }$. |

## Unramified/totally ramified tower

Unramified subfield: | $\Q_{101}$ |

Relative Eisenstein polynomial: | \( x^{2} - 101 \) |

## Invariants of the Galois closure

Galois group: | $C_2$ (as 2T1) |

Inertia group: | $C_2$ |

Unramified degree: | $1$ |

Tame degree: | $2$ |

Wild slopes: | None |

Galois mean slope: | $1/2$ |

Galois splitting model: | $x^{2} - 4 x - 97$ |