The database contains extension fields of $\Q_p$ of degree $n$ up to isomorphism including all extensions for primes $p<200$ and $1\leq n \leq 15$.
Browse local number fields
The table gives for each $p$ and $n$ shown, the number of degree $n$ extension fields of $\Q_p$ up to isomorphism.
| $p$ \ $n$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 7 | 2 | 59 | 2 | 47 | 2 | 1823 | 3 | 158 | 2 | 5493 | 2 | 590 | 4 |
| 3 | 3 | 10 | 5 | 2 | 75 | 2 | 8 | 795 | 6 | 2 | 785 | 2 | 6 | 1172 |
| 5 | 3 | 2 | 7 | 26 | 7 | 2 | 11 | 3 | 258 | 2 | 17 | 2 | 6 | 1012 |
| 7 | 3 | 4 | 5 | 2 | 12 | 50 | 8 | 7 | 6 | 2 | 20 | 2 | 654 | 8 |
| 11 | 3 | 2 | 5 | 6 | 7 | 2 | 8 | 3 | 18 | 122 | 13 | 2 | 6 | 12 |
| 13 | 3 | 4 | 7 | 2 | 12 | 2 | 11 | 7 | 6 | 2 | 28 | 170 | 9 | 8 |
| 17 | 3 | 2 | 7 | 2 | 7 | 2 | 15 | 3 | 6 | 2 | 17 | 2 | 6 | 4 |
| 19 | 3 | 4 | 5 | 2 | 12 | 2 | 8 | 13 | 8 | 2 | 20 | 2 | 6 | 8 |
| 23 | 3 | 2 | 5 | 2 | 7 | 2 | 8 | 3 | 6 | 12 | 13 | 2 | 6 | 4 |
A random local number field from the database.