L-functions can be organized by degree.
All known degree 4 L-functions have a
functional equation of one of the three forms:
\[
\Lambda(s) := N^{s/2} \,
\Gamma_{\mathbb C}(s + \nu_1) \,
\Gamma_{\mathbb C}(s + \nu_2)
\cdot L(s) = \varepsilon \overline{\Lambda}(1-s),
\]
\[
\Lambda(s) := N^{s/2} \,
\Gamma_{\mathbb R}(s+\mu_1) \,
\Gamma_{\mathbb R}(s+\mu_2) \,
\Gamma_{\mathbb C}\left(s+ \nu\right)
\cdot L(s) = \varepsilon \overline{\Lambda}(1-s),
\]
or
\[
\Lambda(s) := N^{s/2} \,
\Gamma_{\mathbb R}(s+\mu_1) \,
\Gamma_{\mathbb R}(s+\mu_2) \,
\Gamma_{\mathbb R}(s+\mu_3) \,
\Gamma_{\mathbb R}(s+\mu_4)
\cdot L(s) = \varepsilon \overline{\Lambda}(1-s),
\]
and an Euler product of the form
\[
L(s)=
\prod_{p|N} \left(1-a_p\, p^{-s} + (a_p^2 - a_{p^2})\, p^{-2s} - (a_p^3 - 2 \, a_{p^2} \, a_p + a_{p^3} ) \, p^{-3s}\right)^{-1}.
\prod_{p\nmid N} \left(1-a_p\, p^{-s} + (a_p^2 - a_{p^2})\, p^{-2s} - \chi(p) \, \overline{a_p} \, p^{-3s} +\chi(p) \, p^{-4s}\right)^{-1}.
\]
Here $N$ is the conductor of the L-function, and $\chi$, known as the central character,
is a primitive Dirichlet character of conductor dividing $N$.
Moreover, $\operatorname{Re}(\mu_j) \in \{0,1\}$, $\operatorname{Re}(\nu_j)$ and $\operatorname{Re}(\nu)$ are integer or an half-integer,
and $2 \sum_j \mu_j + \sum_k \nu_k$ is a positive real.
Browse Degree 4 L-functions
A sample of degree 4 L-functions is in the table below. You can also
browse
by signature
or underlying object:
Signature (0,0,0,0;) Symmetric cube of L-function of elliptic curve Artin representation of dimension 4 Genus 2 curve over $\Q$ Hilbert modular form over a quadratic field Elliptic curve over a quadratic field
| First complex critical zero |
underlying object | $N$ | $\chi$ | arithmetic | self-dual | $\Gamma_{\R}$ parameters | $\Gamma_{\C}$ parameters | $\varepsilon$ |
|---|---|---|---|---|---|---|---|---|
| 16.18901 | $\SL(4,\Z)$ Maass form | 1 | 1 | $16.89i$, $2.272i$, $-6.035i$, $-13.13i$ | 1 | |||
| 14.49606 | $\Sp(4,\Z)$ Maass form | 1 | 1 | ✔ | $4.720i$, $-4.720i$, $12.46i$, $-12.46i$ | 1 | ||
| 4.30352 | genus 2 curve paramodular form | 277 | 1 | ✔ | ✔ | $\frac12$, $\frac12$ | 1 | |
| 3.67899 | Hilbert cusp form over $\Q(\sqrt{5})$Elliptic curve over $\Q(\sqrt5)$ | 775 | 1 | ✔ | ✔ | $\frac12$, $\frac12$ | 1 | |
| 3.50464 | Artin representation | 1609 | $\left(\frac{1609}{\cdot}\right)$ | ✔ | ✔ | 0, 0, 1, 1 | 1 | |
| 2.78027 | Artin representation | 3215 | $\left(\frac{-3215}{\cdot}\right)$ | ✔ | ✔ | 0, 1, 1, 1 | 1 | |
| 2.48044 | Sp(4,$\mathbb Z$) Maass form | 1 | 1 | ✔ | $19.81i$, $-19.81i$, $8.531i$, $-8.531i$ | 1 | ||
| 2.26074 | CM genus 2 curveCM Hilbert cusp form over $\Q(\sqrt{5})$ | 3125 | 1 | ✔ | ✔ | $\frac12$, $\frac12$ | 1 | |
| 2.32002 | $\Sym^3$ of an elliptic curve | 3215 | 1 | ✔ | ✔ | $\frac32$, $\frac12$ | 1 | |
| 1.42931 | RM genus 2 curveHilbert cusp form over $\Q(\sqrt{5})$ | 12500 | 1 | ✔ | ✔ | $\frac12$, $\frac12$ | 1 | |
| 1.21844 | QM genus 2 curveBianchi cusp form over $\Q(\sqrt{-3})$ | 20736 | 1 | ✔ | ✔ | $\frac12$, $\frac12$ | 1 |