L-functions can be organized by degree.
All known degree 3 L-functions have a
functional equation of one of the two forms
\[
\Lambda(s) := N^{s/2} \,
\Gamma_{\mathbb R}(s + \delta + i \mu) \,
\Gamma_{\mathbb C}\left(s + \nu - i \frac{\mu}{2}\right)
\cdot L(s) = \varepsilon \overline{\Lambda}(1-s)
\]
or
\[
\Lambda(s) := N^{s/2} \,
\Gamma_{\mathbb R}(s+\delta_1 + i \mu_1) \,
\Gamma_{\mathbb R}(s+\delta_2 + i \mu_2) \,
\Gamma_{\mathbb R}(s+\delta_3 - i (\mu_1 + \mu_2))
\cdot L(s) = \varepsilon \overline{\Lambda}(1-s),
\]
and an Euler product of the form
\[
L(s)=
\prod_{p|N} \left(1-a_p\, p^{-s} + (a_p^2 - a_{p^2})\, p^{-2s}\right)^{-1}.
\prod_{p\nmid N} \left(1-a_p\, p^{-s}+\chi(p) \, \overline{a_p} \, p^{-2s} -\chi(p) \, p^{-3s}\right)^{-1}.
\]
Here $N$ is the conductor of the L-function, and $\chi$, known as the central character,
is a Dirichlet character mod $N$.
The parameter $\nu$ is an integer or half-integer, the parameters
$\mu_j$ and $\mu$ are real, and
$\delta_j$ is 0 or 1.
If the central character is even (or odd) then either $2\nu + 1 + \delta$
or $\delta_1 + \delta_2 + \delta_3$ is
even (or odd).
Browse Degree 3 L-functions
A sample of degree 3 L-functions is in the table below. You can also
browse
by signature
or underlying object:
Signature (0,0,0;) Symmetric square of of an elliptic curve Artin representation of dimension 3
| First complex critical zero |
underlying object | $N$ | $\chi$ | arithmetic | self-dual | $\delta,\nu$ | $\mu$ | $\delta_1,\delta_2,\delta_3$ | $\mu_1,\mu_2$ | $\varepsilon$ |
|---|---|---|---|---|---|---|---|---|---|---|
| 6.42223 | $\SL(3,\Z)$ Maass form | 1 | 1 | 0,0,0 | 16.40312, 0.17112 | 1 | ||||
| 5.11568 | global number field | 23 | $\left(\frac{-23}{\cdot}\right)$ | ✔ | ✔ | $0$,0 | 0 | 1 | ||
| 3.89928 | $\Sym^2$ of an elliptic curve | 121 | 1 | ✔ | ✔ | $0$,1 | 0 | 1 | ||
| 3.19363 | Artin representation | 229 | $\left(\frac{229}{\cdot}\right)$ | ✔ | ✔ | 0,1,1 | 0, 0 | 1 | ||
| 2.65766 | $\GL(3)$ Maass form | 4 | 1 | 0,0,0 | 8.23979, 2.64122 | 1 | ||||
| 2.53210 | $\GL(3)$ Maass form | 4 | 1 | 0,0,0 | 9.63244, 1.37406 | $e(1/3)$ | ||||
| 2.15869 | $\Sym^2$ of an elliptic curve | 1369 | 1 | ✔ | ✔ | $0$,1 | 0 | 1 | ||
| 1.07683 | $\Sym^2$ of an elliptic curve | 151321 | 1 | ✔ | ✔ | $0$,1 | 0 | 1 | ||
| 0.93372 | $\GL(3)$ Maass form | 4 | 1 | 0,0,0 | 8.95466, 2.93659 | $e(2/3)$ |