# Properties

 Degree $5$ Conductor $1944810000$ Sign $1$ Motivic weight $4$ Arithmetic yes Primitive yes Self-dual yes

# Related objects

(not yet available)

## Dirichlet series

 $L(s, E, \mathrm{sym}^{4})$  = 1 + 0.250·2-s + 0.111·3-s + 0.0625·4-s + 0.0400·5-s + 0.0277·6-s + 0.0204·7-s + 0.0156·8-s + 0.0123·9-s + 0.0100·10-s + 11-s + 0.00694·12-s + 0.171·13-s + 0.00510·14-s + 0.00444·15-s + 0.00390·16-s − 0.868·17-s + 0.00308·18-s − 0.817·19-s + 0.00250·20-s + 0.00226·21-s + 0.250·22-s + 23-s + 0.00173·24-s + 0.00160·25-s + 0.0428·26-s + 0.00137·27-s + 0.00127·28-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s,E,\mathrm{sym}^{4})=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\R}(s) \, \Gamma_{\C}(s+2) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{4})\cr=\mathstrut & \,\Lambda(1-{s}, E,\mathrm{sym}^{4})\end{aligned}

## Invariants

 Degree: $$5$$ Conductor: $$2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}$$ Sign: $1$ Arithmetic: yes Primitive: yes Self-dual: yes Selberg data: $$(5,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4} ,\ ( 0 : 2.0, 1.0 ),\ 1 )$$

## Particular Values

L(1/2): not computed L(1): not computed

## Euler product

$$L(s, E, \mathrm{sym}^{4}) = (1-2^{- s})^{-1}(1-3^{- s})^{-1}(1-5^{- s})^{-1}(1-7^{- s})^{-1}\prod_{p \nmid 11760 }\prod_{j=0}^{4} \left(1- \frac{\alpha_p^j\beta_p^{4-j}}{p^{s}} \right)^{-1}$$

## Imaginary part of the first few zeros on the critical line

Zeros not available.

## Graph of the $Z$-function along the critical line

Plot not available.