Properties

Degree 4
Conductor $ 2^{3} \cdot 3^{4} \cdot 5^{4} \cdot 167^{3} $
Sign $1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.353·2-s + 0.125·4-s + 0.701·7-s − 0.0441·8-s + 0.853·13-s − 0.248·14-s + 0.0156·16-s + 3.42·17-s − 0.929·19-s + 0.190·23-s − 0.301·26-s + 0.0877·28-s − 0.691·29-s + 0.672·31-s − 0.00552·32-s − 1.21·34-s − 3.73·37-s + 0.328·38-s + 0.879·41-s + 0.993·43-s − 0.0673·46-s + 0.558·47-s − 1.09·49-s + 0.106·52-s − 1.04·53-s − 0.0310·56-s + 0.244·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{3} \cdot 3^{4} \cdot 5^{4} \cdot 167^{3}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & \,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2^{3} \cdot 3^{4} \cdot 5^{4} \cdot 167^{3}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 2^{3} \cdot 3^{4} \cdot 5^{4} \cdot 167^{3} ,\ ( \ : 1.5, 0.5 ),\ 1 )$

Euler product

\[\begin{aligned}L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1} (1-167^{- s})^{-1}\prod_{p \nmid 75150 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.