Properties

Degree 4
Conductor $ 2^{12} \cdot 3^{4} \cdot 11^{4} $
Sign $-1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 1.07·5-s − 1.07·7-s + 0.938·13-s − 1.02·17-s + 0.144·19-s + 0.912·25-s + 0.307·29-s − 0.0926·31-s + 1.15·35-s − 1.15·37-s − 0.548·41-s + 0.581·43-s − 0.744·47-s + 0.553·49-s + 0.528·53-s + 0.688·59-s − 0.461·61-s − 1.00·65-s − 0.218·67-s + 1.04·71-s + 1.05·73-s − 0.438·79-s − 1.90·83-s + 1.10·85-s + 0.300·89-s − 1.01·91-s − 0.155·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & -\,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2^{12} \cdot 3^{4} \cdot 11^{4}\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 2^{12} \cdot 3^{4} \cdot 11^{4} ,\ ( \ : 1.5, 0.5 ),\ -1 )$

Euler product

\[\begin{aligned}L(s, E, \mathrm{sym}^{3}) = \prod_{p \nmid 69696 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.