Dirichlet series
$L(s, E, \mathrm{sym}^{3})$ = 1 | − 1.06·2-s + 0.192·3-s + 0.375·4-s + 1.07·5-s − 0.204·6-s − 0.662·8-s + 0.0370·9-s − 1.13·10-s + 0.0721·12-s + 1.28·13-s + 0.206·15-s + 0.546·16-s − 0.171·17-s − 0.0392·18-s − 0.0120·19-s + 0.402·20-s − 1.08·23-s − 0.127·24-s + 0.912·25-s − 1.35·26-s + 0.00712·27-s − 0.691·29-s − 0.219·30-s + 0.0926·31-s + 0.580·32-s + 0.181·34-s + 0.0138·36-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 185193 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(185193\) = \(3^{3} \cdot 19^{3}\) |
Sign: | $1$ |
Arithmetic: | yes |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((4,\ 185193,\ (\ :1.5, 0.5),\ 1)\) |
Particular Values
L(1/2): not computed
L(1): not computed
Euler product
\(L(s, E, \mathrm{sym}^{3}) = (1-3^{- s})^{-1}(1+19^{ -s})^{-1}\prod_{p \nmid 57 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line
Zeros not available.
Graph of the $Z$-function along the critical line
Plot not available.