Dirichlet series
$L(s, E, \mathrm{sym}^{3})$ = 1 | − 0.353·2-s + 0.125·4-s + 0.0894·5-s − 0.0441·8-s − 0.0316·10-s + 0.938·13-s + 0.0156·16-s + 0.821·19-s + 0.0111·20-s + 0.00800·25-s − 0.331·26-s − 0.845·29-s − 0.0926·31-s − 0.00552·32-s + 1.03·37-s − 0.290·38-s − 0.00395·40-s + 1.05·41-s − 0.581·43-s − 1.08·47-s − 0.00282·50-s + 0.117·52-s − 1.08·53-s + 0.298·58-s − 0.688·59-s + 0.973·61-s + 0.0327·62-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{3} \cdot 3^{4} \cdot 5^{3} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & \,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(2^{3} \cdot 3^{4} \cdot 5^{3} \cdot 7^{4}\) |
Sign: | $1$ |
Arithmetic: | yes |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((4,\ 2^{3} \cdot 3^{4} \cdot 5^{3} \cdot 7^{4} ,\ ( \ : 1.5, 0.5 ),\ 1 )\) |
Particular Values
L(1/2): not computed
L(1): not computed
Euler product
\(L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1} (1-5^{- s})^{-1} \prod_{p \nmid 4410 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line
Zeros not available.
Graph of the $Z$-function along the critical line
Plot not available.