Properties

Degree 4
Conductor $ 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 11^{3} $
Sign $1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  + 0.431·7-s + 0.0274·11-s − 0.938·13-s + 0.856·17-s − 1.30·23-s − 0.845·29-s + 0.0926·31-s + 1.01·37-s − 0.594·41-s + 0.744·47-s − 0.180·49-s − 1.08·53-s + 0.900·59-s − 1.08·61-s + 0.860·67-s + 1.12·73-s + 0.0118·77-s − 0.808·79-s + 0.349·83-s − 1.01·89-s − 0.405·91-s + 0.397·97-s + 0.390·101-s − 1.08·103-s − 0.758·107-s + 0.376·109-s + 0.949·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & \,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 11^{3}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 11^{3} ,\ ( \ : 1.5, 0.5 ),\ 1 )$

Euler product

\[\begin{aligned}L(s, E, \mathrm{sym}^{3}) = (1-11^{- s})^{-1}\prod_{p \nmid 39600 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.