Properties

Degree $4$
Conductor $42875$
Sign $1$
Motivic weight $3$
Arithmetic yes
Primitive yes
Self-dual yes

Related objects

Learn more

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.962·3-s − 2·4-s − 0.0894·5-s + 0.0539·7-s − 0.185·9-s + 1.06·11-s + 1.92·12-s − 0.106·13-s + 0.0860·15-s + 3·16-s − 1.07·17-s − 0.821·19-s + 0.178·20-s − 0.0519·21-s + 0.543·23-s + 0.00800·25-s + 0.285·27-s − 0.107·28-s − 0.941·29-s + 1.06·31-s − 1.02·33-s − 0.00482·35-s + 0.370·36-s − 0.622·37-s + 0.102·39-s − 2.83·41-s − 0.496·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 42875 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(42875\)    =    \(5^{3} \cdot 7^{3}\)
Sign: $1$
Arithmetic: yes
Primitive: yes
Self-dual: yes
Selberg data: \((4,\ 42875,\ (\ :1.5, 0.5),\ 1)\)

Particular Values

L(1/2): not computed L(1): not computed

Euler product

\(L(s, E, \mathrm{sym}^{3}) = (1+5^{ -s})^{-1}(1-7^{- s})^{-1}\prod_{p \nmid 35 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.