Properties

Degree $4$
Conductor $35937000$
Sign $1$
Motivic weight $3$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  + 0.353·2-s − 0.192·3-s + 0.125·4-s + 0.0894·5-s − 0.0680·6-s + 0.0441·8-s + 0.0370·9-s + 0.0316·10-s + 0.0274·11-s − 0.0240·12-s + 1.28·13-s − 0.0172·15-s + 0.0156·16-s − 0.856·17-s + 0.0130·18-s + 1.06·19-s + 0.0111·20-s + 0.00969·22-s − 0.00850·24-s + 0.00800·25-s + 0.452·26-s − 0.00712·27-s − 2.68·29-s − 0.00608·30-s + 0.00552·32-s − 0.00527·33-s − 0.302·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 35937000 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(35937000\)    =    \(2^{3} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}\)
Sign: $1$
Primitive: yes
Self-dual: yes
Selberg data: \((4,\ 35937000,\ (\ :1.5, 0.5),\ 1)\)

Particular Values

L(1/2): not computed L(1): not computed

Euler product

\(L(s, E, \mathrm{sym}^{3}) = (1-2^{- s})^{-1}(1+3^{ -s})^{-1}(1-5^{- s})^{-1}(1-11^{- s})^{-1}\prod_{p \nmid 330 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.