Properties

Degree $4$
Conductor $17576$
Sign $1$
Motivic weight $3$
Arithmetic yes
Primitive yes
Self-dual yes

Related objects

Learn more

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.353·2-s − 0.962·3-s + 0.125·4-s + 0.268·5-s + 0.340·6-s + 0.701·7-s − 0.0441·8-s − 0.185·9-s − 0.0948·10-s + 2.30·11-s − 0.120·12-s + 0.0213·13-s − 0.248·14-s − 0.258·15-s + 0.0156·16-s + 1.07·17-s + 0.0654·18-s − 0.821·19-s + 0.0335·20-s − 0.675·21-s − 0.814·22-s + 0.0425·24-s + 0.232·25-s − 0.00754·26-s + 0.285·27-s + 0.0877·28-s − 0.845·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 17576 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(17576\)    =    \(2^{3} \cdot 13^{3}\)
Sign: $1$
Arithmetic: yes
Primitive: yes
Self-dual: yes
Selberg data: \((4,\ 17576,\ (\ :1.5, 0.5),\ 1)\)

Particular Values

L(1/2): not computed L(1): not computed

Euler product

\(L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1}(1-13^{- s})^{-1}\prod_{p \nmid 26 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.