Properties

Degree $4$
Conductor $165957120000$
Sign $1$
Motivic weight $3$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  + 0.192·3-s + 0.0370·9-s + 0.938·13-s − 0.171·17-s − 2.51·19-s + 0.00712·27-s + 0.845·29-s + 1.06·31-s − 1.15·37-s + 0.180·39-s − 1.05·41-s − 0.993·43-s − 0.0329·51-s + 1.08·53-s − 0.483·57-s + 0.688·59-s + 0.461·61-s − 0.860·67-s − 0.0401·71-s + 0.737·73-s + 1.07·79-s + 0.00137·81-s − 0.349·83-s + 0.162·87-s − 1.01·89-s + 0.205·93-s + 0.983·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & \,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2^{12} \cdot 3^{3} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Primitive: yes
Self-dual: yes
Selberg data: \((4,\ 2^{12} \cdot 3^{3} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1.5, 0.5 ),\ 1 )\)

Particular Values

L(1/2): not computed L(1): not computed

Euler product

\(L(s, E, \mathrm{sym}^{3}) = (1-3^{- s})^{-1} \prod_{p \nmid 235200 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.