Properties

Degree 4
Conductor $ 2^{3} \cdot 3^{3} \cdot 7^{3} \cdot 13^{3} \cdot 41^{3} $
Sign $-1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  + 0.353·2-s + 0.192·3-s + 0.125·4-s + 0.268·5-s + 0.0680·6-s + 0.0539·7-s + 0.0441·8-s + 0.0370·9-s + 0.0948·10-s + 1.06·11-s + 0.0240·12-s + 0.0213·13-s + 0.0190·14-s + 0.0516·15-s + 0.0156·16-s − 1.07·17-s + 0.0130·18-s + 1.06·19-s + 0.0335·20-s + 0.0103·21-s + 0.377·22-s − 1.00·23-s + 0.00850·24-s + 0.232·25-s + 0.00754·26-s + 0.00712·27-s + 0.00674·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{3} \cdot 3^{3} \cdot 7^{3} \cdot 13^{3} \cdot 41^{3}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & -\,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2^{3} \cdot 3^{3} \cdot 7^{3} \cdot 13^{3} \cdot 41^{3}\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 2^{3} \cdot 3^{3} \cdot 7^{3} \cdot 13^{3} \cdot 41^{3} ,\ ( \ : 1.5, 0.5 ),\ -1 )$

Euler product

\[\begin{aligned}L(s, E, \mathrm{sym}^{3}) = (1-2^{- s})^{-1}(1-3^{- s})^{-1}(1-7^{- s})^{-1}(1-13^{- s})^{-1}(1+41^{ -s})^{-1}\prod_{p \nmid 22386 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.