Dirichlet series
$L(s, E, \mathrm{sym}^{3})$ = 1 | + 0.353·2-s + 0.125·4-s − 1.07·5-s − 0.0539·7-s + 0.0441·8-s − 2·9-s − 0.379·10-s − 0.657·11-s − 0.0213·13-s − 0.0190·14-s + 0.0156·16-s − 0.171·17-s − 0.707·18-s − 0.134·20-s − 0.232·22-s + 1.30·23-s + 0.912·25-s − 0.00754·26-s − 0.00674·28-s − 2.68·29-s − 0.0926·31-s + 0.00552·32-s − 0.0605·34-s + 0.0579·35-s − 0.250·36-s − 1.01·37-s − 0.0474·40-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 6028568 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(6028568\) = \(2^{3} \cdot 7^{3} \cdot 13^{3}\) |
Sign: | $1$ |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((4,\ 6028568,\ (\ :1.5, 0.5),\ 1)\) |
Particular Values
L(1/2): not computed
L(1): not computed
Euler product
\(L(s, E, \mathrm{sym}^{3}) = (1-2^{- s})^{-1}(1+7^{ -s})^{-1}(1+13^{ -s})^{-1}\prod_{p \nmid 182 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line
Zeros not available.
Graph of the $Z$-function along the critical line
Plot not available.