Dirichlet series
$L(s, E, \mathrm{sym}^{3})$ = 1 | − 0.353·2-s − 0.192·3-s + 0.125·4-s + 0.0680·6-s + 0.0539·7-s − 0.0441·8-s + 0.0370·9-s − 0.0240·12-s − 0.0190·14-s + 0.0156·16-s + 0.171·17-s − 0.0130·18-s − 2.51·19-s − 0.0103·21-s + 0.00850·24-s − 0.00712·27-s + 0.00674·28-s − 0.845·29-s − 1.06·31-s − 0.00552·32-s − 0.0605·34-s + 0.00462·36-s − 1.15·37-s + 0.887·38-s − 1.05·41-s + 0.00367·42-s − 0.993·43-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{3} \cdot 3^{3} \cdot 5^{4} \cdot 7^{3} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & \,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(2^{3} \cdot 3^{3} \cdot 5^{4} \cdot 7^{3} \cdot 13^{4}\) |
Sign: | $1$ |
Arithmetic: | yes |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((4,\ 2^{3} \cdot 3^{3} \cdot 5^{4} \cdot 7^{3} \cdot 13^{4} ,\ ( \ : 1.5, 0.5 ),\ 1 )\) |
Particular Values
L(1/2): not computed
L(1): not computed
Euler product
\(L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1}(1+3^{ -s})^{-1} (1-7^{- s})^{-1} \prod_{p \nmid 177450 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line
Zeros not available.
Graph of the $Z$-function along the critical line
Plot not available.