Properties

Degree 4
Conductor $ 2^{3} \cdot 3^{4} \cdot 5^{3} \cdot 11^{3} \cdot 17^{3} $
Sign $1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.353·2-s + 0.125·4-s − 0.0894·5-s + 0.431·7-s − 0.0441·8-s + 0.0316·10-s + 0.0274·11-s + 0.533·13-s − 0.152·14-s + 0.0156·16-s − 0.0142·17-s − 1.05·19-s − 0.0111·20-s − 0.00969·22-s + 1.08·23-s + 0.00800·25-s − 0.188·26-s + 0.0539·28-s + 0.941·29-s + 0.353·31-s − 0.00552·32-s + 0.00504·34-s − 0.0386·35-s − 1.03·37-s + 0.371·38-s + 0.00395·40-s + 1.06·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{3} \cdot 3^{4} \cdot 5^{3} \cdot 11^{3} \cdot 17^{3}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & \,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2^{3} \cdot 3^{4} \cdot 5^{3} \cdot 11^{3} \cdot 17^{3}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 2^{3} \cdot 3^{4} \cdot 5^{3} \cdot 11^{3} \cdot 17^{3} ,\ ( \ : 1.5, 0.5 ),\ 1 )$

Euler product

\[\begin{aligned}L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1} (1+5^{ -s})^{-1}(1-11^{- s})^{-1}(1+17^{ -s})^{-1}\prod_{p \nmid 16830 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.