Properties

Degree 4
Conductor $ 2^{12} \cdot 5^{3} \cdot 7^{4} $
Sign $-1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.769·3-s − 0.0894·5-s + 0.814·9-s − 0.938·13-s + 0.0688·15-s + 0.171·17-s − 1.06·19-s + 0.543·23-s + 0.00800·25-s − 1.56·27-s + 0.845·29-s + 1.06·31-s + 0.622·37-s + 0.722·39-s + 1.05·41-s − 0.496·43-s − 0.0728·45-s + 1.08·47-s − 0.131·51-s − 1.08·53-s + 0.817·57-s − 0.688·59-s − 0.495·61-s + 0.0839·65-s − 0.474·67-s − 0.418·69-s + 0.0401·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{12} \cdot 5^{3} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & -\,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2^{12} \cdot 5^{3} \cdot 7^{4}\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 2^{12} \cdot 5^{3} \cdot 7^{4} ,\ ( \ : 1.5, 0.5 ),\ -1 )$

Euler product

\[\begin{aligned}L(s, E, \mathrm{sym}^{3}) = (1+5^{ -s})^{-1} \prod_{p \nmid 15680 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.