Dirichlet series
$L(s, E, \mathrm{sym}^{3})$ = 1 | + 1.06·2-s − 0.192·3-s + 0.375·4-s + 0.0894·5-s − 0.204·6-s + 0.662·8-s + 0.0370·9-s + 0.0948·10-s + 0.657·11-s − 0.0721·12-s + 0.938·13-s − 0.0172·15-s + 0.546·16-s − 0.856·17-s + 0.0392·18-s − 1.06·19-s + 0.0335·20-s + 0.697·22-s − 0.127·24-s + 0.00800·25-s + 0.995·26-s − 0.00712·27-s + 0.691·29-s − 0.0182·30-s − 0.580·32-s − 0.126·33-s − 0.907·34-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(3375\) = \(3^{3} \cdot 5^{3}\) |
Sign: | $1$ |
Arithmetic: | yes |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((4,\ 3375,\ (\ :1.5, 0.5),\ 1)\) |
Particular Values
\[L(1/2, E, \mathrm{sym}^{3}) \approx 1.934150652\]
\[L(1, E, \mathrm{sym}^{3}) \approx 1.656256181\]
Euler product
\(L(s, E, \mathrm{sym}^{3}) = (1+3^{ -s})^{-1}(1-5^{- s})^{-1}\prod_{p \nmid 15 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line