Properties

Degree $4$
Conductor $20736$
Sign $-1$
Motivic weight $3$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 1.07·5-s − 0.657·11-s + 0.938·13-s + 0.856·17-s − 1.06·19-s − 1.30·23-s + 0.912·25-s + 0.845·29-s − 0.0926·31-s − 1.01·37-s − 1.05·41-s + 0.993·43-s − 2·49-s − 0.528·53-s + 0.706·55-s − 0.900·59-s + 0.495·61-s − 1.00·65-s − 0.860·67-s − 1.04·71-s − 0.737·73-s − 1.07·79-s + 0.793·83-s − 0.918·85-s − 1.01·89-s + 1.14·95-s − 0.397·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 20736 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & -\, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(20736\)    =    \(2^{8} \cdot 3^{4}\)
Sign: $-1$
Primitive: yes
Self-dual: yes
Selberg data: \((4,\ 20736,\ (\ :1.5, 0.5),\ -1)\)

Particular Values

L(1/2): not computed L(1): not computed

Euler product

\(L(s, E, \mathrm{sym}^{3}) = \prod_{p \nmid 144 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.