Properties

Degree 4
Conductor $ 2^{3} \cdot 3^{3} \cdot 23^{3} $
Sign $-1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.353·2-s − 0.192·3-s + 0.125·4-s + 1.07·5-s + 0.0680·6-s + 1.07·7-s − 0.0441·8-s + 0.0370·9-s − 0.379·10-s − 2.30·11-s − 0.0240·12-s + 0.938·13-s − 0.381·14-s − 0.206·15-s + 0.0156·16-s − 0.0130·18-s + 0.134·20-s − 0.207·21-s + 0.814·22-s − 0.00906·23-s + 0.00850·24-s + 0.912·25-s − 0.331·26-s − 0.00712·27-s + 0.134·28-s − 0.845·29-s + 0.0730·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 2628072 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & -\, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2628072\)    =    \(2^{3} \cdot 3^{3} \cdot 23^{3}\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 2628072,\ (\ :1.5, 0.5),\ -1)$

Euler product

\[\begin{aligned}L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1}(1+3^{ -s})^{-1}(1+23^{ -s})^{-1}\prod_{p \nmid 138 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.