Properties

Degree 4
Conductor $ 3^{3} \cdot 43^{3} $
Sign $-1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.192·3-s − 2·4-s + 1.07·5-s + 1.07·7-s + 0.0370·9-s − 0.411·11-s + 0.384·12-s − 1.08·13-s − 0.206·15-s + 3·16-s + 1.07·17-s − 0.821·19-s − 2.14·20-s − 0.207·21-s + 0.407·23-s + 0.912·25-s − 0.00712·27-s − 2.15·28-s + 1.07·31-s + 0.0791·33-s + 1.15·35-s − 0.0740·36-s − 0.355·37-s + 0.209·39-s + 0.879·41-s − 0.00354·43-s + 0.822·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 2146689 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & -\, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2146689\)    =    \(3^{3} \cdot 43^{3}\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  \((4,\ 2146689,\ (\ :1.5, 0.5),\ -1)\)

Euler product

\[\begin{aligned}L(s, E, \mathrm{sym}^{3}) = (1+3^{ -s})^{-1}(1+43^{ -s})^{-1}\prod_{p \nmid 129 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.