Dirichlet series
$L(s, E, \mathrm{sym}^{3})$ = 1 | − 1.06·2-s + 0.375·4-s + 1.07·5-s − 0.662·8-s − 1.13·10-s + 0.657·11-s − 0.938·13-s + 0.546·16-s − 0.856·17-s − 1.06·19-s + 0.402·20-s − 0.697·22-s + 0.912·25-s + 0.995·26-s − 0.00640·29-s + 0.0926·31-s + 0.580·32-s + 0.907·34-s − 1.15·37-s + 1.12·38-s − 0.711·40-s + 1.05·41-s + 2.46·43-s + 0.246·44-s + 0.744·47-s − 0.967·50-s − 0.352·52-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 29^{3}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & -\,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(3^{4} \cdot 7^{4} \cdot 29^{3}\) |
Sign: | $-1$ |
Arithmetic: | yes |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((4,\ 3^{4} \cdot 7^{4} \cdot 29^{3} ,\ ( \ : 1.5, 0.5 ),\ -1 )\) |
Particular Values
L(1/2): not computed
L(1): not computed
Euler product
\(L(s, E, \mathrm{sym}^{3}) = (1+29^{ -s})^{-1}\prod_{p \nmid 12789 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line
Zeros not available.
Graph of the $Z$-function along the critical line
Plot not available.