Properties

Degree $4$
Conductor $1331$
Sign $1$
Motivic weight $3$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  + 0.962·3-s − 0.804·5-s + 1.07·7-s − 0.185·9-s + 0.0274·11-s − 0.853·13-s − 0.774·15-s − 16-s + 0.856·17-s + 1.03·21-s + 0.407·23-s − 0.792·25-s − 0.285·27-s − 0.527·31-s + 0.0263·33-s − 0.869·35-s − 0.866·37-s − 0.821·39-s + 0.548·41-s + 1.06·43-s + 0.149·45-s − 0.744·47-s − 0.962·48-s + 0.553·49-s + 0.823·51-s + 1.08·53-s − 0.0220·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1331\)    =    \(11^{3}\)
Sign: $1$
Primitive: yes
Self-dual: yes
Selberg data: \((4,\ 1331,\ (\ :1.5, 0.5),\ 1)\)

Particular Values

\[L(1/2, E, \mathrm{sym}^{3}) \approx 1.140230868\] \[L(1, E, \mathrm{sym}^{3}) \approx 1.176328075\]

Euler product

\(L(s, E, \mathrm{sym}^{3}) = (1-11^{- s})^{-1}\prod_{p \nmid 11 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line