Dirichlet series
$L(s, E, \mathrm{sym}^{3})$ = 1 | − 0.353·2-s + 0.192·3-s + 0.125·4-s + 0.0894·5-s − 0.0680·6-s + 1.07·7-s − 0.0441·8-s + 0.0370·9-s − 0.0316·10-s + 0.0240·12-s − 1.28·13-s − 0.381·14-s + 0.0172·15-s + 0.0156·16-s + 3.42·17-s − 0.0130·18-s + 0.0111·20-s + 0.207·21-s + 1.08·23-s − 0.00850·24-s + 0.00800·25-s + 0.452·26-s + 0.00712·27-s + 0.134·28-s + 0.691·29-s − 0.00608·30-s − 0.672·31-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{3} \cdot 3^{3} \cdot 5^{3} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr=\mathstrut & -\,\Lambda(1-{s}, E,\mathrm{sym}^{3})\end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(2^{3} \cdot 3^{3} \cdot 5^{3} \cdot 19^{4}\) |
Sign: | $-1$ |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((4,\ 2^{3} \cdot 3^{3} \cdot 5^{3} \cdot 19^{4} ,\ ( \ : 1.5, 0.5 ),\ -1 )\) |
Particular Values
L(1/2): not computed
L(1): not computed
Euler product
\(L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1}(1-3^{- s})^{-1}(1-5^{- s})^{-1} \prod_{p \nmid 10830 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line
Zeros not available.
Graph of the $Z$-function along the critical line
Plot not available.