Properties

Degree 4
Conductor $ 2^{3} \cdot 5^{3} \cdot 73^{3} \cdot 137^{3} $
Sign $-1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.353·2-s − 0.769·3-s + 0.125·4-s − 0.0894·5-s + 0.272·6-s + 1.07·7-s − 0.0441·8-s + 0.814·9-s + 0.0316·10-s + 0.986·11-s − 0.0962·12-s + 0.938·13-s − 0.381·14-s + 0.0688·15-s + 0.0156·16-s − 0.171·17-s − 0.288·18-s + 1.06·19-s − 0.0111·20-s − 0.831·21-s − 0.348·22-s + 0.543·23-s + 0.0340·24-s + 0.00800·25-s − 0.331·26-s − 1.56·27-s + 0.134·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{3} \cdot 5^{3} \cdot 73^{3} \cdot 137^{3}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & -\,\Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2^{3} \cdot 5^{3} \cdot 73^{3} \cdot 137^{3}\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 2^{3} \cdot 5^{3} \cdot 73^{3} \cdot 137^{3} ,\ ( \ : 1.5, 0.5 ),\ -1 )$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1}(1+5^{ -s})^{-1}(1-73^{- s})^{-1}(1-137^{- s})^{-1}\prod_{p \nmid 100010 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.