Properties

Degree $3$
Conductor $576$
Sign $1$
Motivic weight $2$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  + 0.333·3-s − 0.200·5-s + 1.28·7-s + 0.111·9-s + 0.454·11-s − 0.692·13-s − 0.0666·15-s + 1.11·17-s − 0.157·19-s + 0.428·21-s − 23-s + 0.239·25-s + 0.0370·27-s − 0.862·29-s − 0.483·31-s + 0.151·33-s − 0.257·35-s − 0.891·37-s − 0.230·39-s − 0.902·41-s − 0.627·43-s − 0.0222·45-s + 0.361·47-s + 0.367·49-s + 0.372·51-s + 0.886·53-s − 0.0909·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 576 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $1$
Primitive: yes
Self-dual: yes
Selberg data: \((3,\ 576,\ (1:1.0),\ 1)\)

Particular Values

\[L(1/2, E, \mathrm{sym}^{2}) \approx 1.403726776\] \[L(1, E, \mathrm{sym}^{2}) \approx 1.228029875\]

Euler product

\(L(s, E, \mathrm{sym}^{2}) = (1-3^{- s})^{-1}\prod_{p \nmid 96 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line