Properties

Degree 3
Conductor $ 2^{2} \cdot 3^{2} \cdot 5^{2} $
Sign $1$
Motivic weight 2
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  + 0.5·2-s − 3-s + 0.250·4-s + 0.200·5-s − 0.5·6-s − 0.428·7-s + 0.125·8-s + 9-s + 0.100·10-s + 2.27·11-s − 0.250·12-s + 0.230·13-s − 0.214·14-s − 0.200·15-s + 0.0625·16-s + 1.11·17-s + 0.5·18-s − 0.157·19-s + 0.0500·20-s + 0.428·21-s + 1.13·22-s − 23-s − 0.125·24-s + 0.0400·25-s + 0.115·26-s − 27-s − 0.107·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 900 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned} \]

Invariants

\( d \)  =  \(3\)
\( N \)  =  \(900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(3,\ 900,\ (1:1.0),\ 1)$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{2}) = (1-2^{- s})^{-1}(1+3\ 3^{- s})^{-1}(1-5^{- s})^{-1}\prod_{p \nmid 90 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

\[L(1/2, E, \mathrm{sym}^{2}) \approx 1.432427676\] \[L(1, E, \mathrm{sym}^{2}) \approx 1.181222957\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line