Properties

Degree $3$
Conductor $12100$
Sign $1$
Motivic weight $2$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  − 2-s + 0.333·3-s + 4-s + 0.200·5-s − 0.333·6-s + 1.28·7-s − 8-s − 0.222·9-s − 0.200·10-s + 0.0909·11-s + 0.333·12-s + 0.230·13-s − 1.28·14-s + 0.0666·15-s + 16-s − 17-s + 0.222·18-s − 0.157·19-s + 0.200·20-s + 0.428·21-s − 0.0909·22-s + 0.565·23-s − 0.333·24-s + 0.0400·25-s − 0.230·26-s + 0.814·27-s + 1.28·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 12100 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(12100\)    =    \(2^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Primitive: yes
Self-dual: yes
Selberg data: \((3,\ 12100,\ (1:1.0),\ 1)\)

Particular Values

\[L(1/2, E, \mathrm{sym}^{2}) \approx 1.716177707\] \[L(1, E, \mathrm{sym}^{2}) \approx 0.9852717846\]

Euler product

\(L(s, E, \mathrm{sym}^{2}) = (1+2\ 2^{- s})^{-1}(1-3^{- s}+3\ 3^{-2 s}-27 \ 3^{-3 s})^{-1}(1-5^{- s})^{-1}(1-11^{- s})^{-1}\prod_{p \nmid 7920 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line