Dirichlet series
$L(s, E, \mathrm{sym}^{2})$ = 1 | + 2-s + 0.333·3-s − 5-s + 0.333·6-s + 0.285·7-s + 0.111·9-s − 10-s − 0.636·11-s − 0.923·13-s + 0.285·14-s − 0.333·15-s + 16-s − 0.764·17-s + 0.111·18-s + 0.315·19-s + 0.0952·21-s − 0.636·22-s + 0.565·23-s + 25-s − 0.923·26-s + 0.0370·27-s + 2.44·29-s − 0.333·30-s − 0.709·31-s + 32-s − 0.212·33-s − 0.764·34-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 225 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}\]
Invariants
Degree: | \(3\) |
Conductor: | \(225\) = \(3^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Arithmetic: | yes |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((3,\ 225,\ (1:1.0),\ 1)\) |
Particular Values
\[L(1/2, E, \mathrm{sym}^{2}) \approx 1.325233443\]
\[L(1, E, \mathrm{sym}^{2}) \approx 1.371662535\]
Euler product
\(L(s, E, \mathrm{sym}^{2}) = (1-3^{- s})^{-1}(1+5\ 5^{- s})^{-1}\prod_{p \nmid 75 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line