Dirichlet series
$L(s, E, \mathrm{sym}^{2})$ = 1 | + 0.5·2-s − 3-s + 0.250·4-s + 0.200·5-s − 0.5·6-s + 0.142·7-s + 0.125·8-s + 2·9-s + 0.100·10-s + 0.454·11-s − 0.250·12-s + 1.76·13-s + 0.0714·14-s − 0.200·15-s + 0.0625·16-s − 0.764·17-s + 18-s − 19-s + 0.0500·20-s − 0.142·21-s + 0.227·22-s − 23-s − 0.125·24-s + 0.0400·25-s + 0.884·26-s − 2·27-s + 0.0357·28-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 4900 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}\]
Invariants
Degree: | \(3\) |
Conductor: | \(4900\) = \(2^{2} \cdot 5^{2} \cdot 7^{2}\) |
Sign: | $1$ |
Arithmetic: | yes |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((3,\ 4900,\ (1:1.0),\ 1)\) |
Particular Values
\[L(1/2, E, \mathrm{sym}^{2}) \approx 2.115192381\]
\[L(1, E, \mathrm{sym}^{2}) \approx 1.328426558\]
Euler product
\(L(s, E, \mathrm{sym}^{2}) = (1-2^{- s})^{-1}(1-5^{- s})^{-1}(1-7^{- s})^{-1}\prod_{p \nmid 70 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line