Properties

Degree $3$
Conductor $1369$
Sign $1$
Motivic weight $2$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  + 2-s + 2·3-s − 0.200·5-s + 2·6-s − 0.857·7-s + 2·9-s − 0.200·10-s + 1.27·11-s − 0.692·13-s − 0.857·14-s − 0.400·15-s + 16-s − 17-s + 2·18-s − 19-s − 1.71·21-s + 1.27·22-s − 0.826·23-s + 0.239·25-s − 0.692·26-s + 27-s + 0.241·29-s − 0.400·30-s − 0.483·31-s + 32-s + 2.54·33-s − 34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 1369 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(1369\)    =    \(37^{2}\)
Sign: $1$
Primitive: yes
Self-dual: yes
Selberg data: \((3,\ 1369,\ (1:1.0),\ 1)\)

Particular Values

\[L(1/2, E, \mathrm{sym}^{2}) \approx 3.513394223\] \[L(1, E, \mathrm{sym}^{2}) \approx 2.492262044\]

Euler product

\(L(s, E, \mathrm{sym}^{2}) = (1-37^{- s})^{-1}\prod_{p \nmid 37 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line