Properties

Degree $3$
Conductor $19600$
Sign $1$
Motivic weight $2$
Arithmetic yes
Primitive yes
Self-dual yes

Related objects

Learn more

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  + 2·3-s + 0.200·5-s + 0.142·7-s + 2·9-s + 1.27·11-s + 0.923·13-s + 0.400·15-s + 1.88·17-s − 0.789·19-s + 0.285·21-s − 0.826·23-s + 0.0400·25-s + 27-s + 0.689·29-s − 0.483·31-s + 2.54·33-s + 0.0285·35-s − 0.0270·37-s + 1.84·39-s + 2.51·41-s − 0.906·43-s + 0.400·45-s − 0.978·47-s + 0.0204·49-s + 3.76·51-s − 53-s + 0.254·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 19600 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(19600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Arithmetic: yes
Primitive: yes
Self-dual: yes
Selberg data: \((3,\ 19600,\ (1:1.0),\ 1)\)

Particular Values

L(1/2): not computed L(1): not computed

Euler product

\(L(s, E, \mathrm{sym}^{2}) = (1-5^{- s})^{-1}(1-7^{- s})^{-1}\prod_{p \nmid 280 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.