Properties

Degree 3
Conductor $ 2^{4} \cdot 47^{2} \cdot 73^{2} $
Sign $1$
Motivic weight 2
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  + 2·3-s + 0.800·5-s + 1.28·7-s + 2·9-s + 0.454·11-s + 0.923·13-s + 1.60·15-s + 1.11·17-s − 0.789·19-s + 2.57·21-s + 1.78·23-s − 0.160·25-s + 27-s + 1.79·29-s − 0.483·31-s + 0.909·33-s + 1.02·35-s − 0.972·37-s + 1.84·39-s + 1.43·41-s − 0.418·43-s + 1.60·45-s + 0.0212·47-s + 0.367·49-s + 2.23·51-s − 0.698·53-s + 0.363·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut &\left(2^{4} \cdot 47^{2} \cdot 73^{2}\right)^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr=\mathstrut & \,\Lambda(1-{s}, E,\mathrm{sym}^{2})\end{aligned}\]

Invariants

\( d \)  =  \(3\)
\( N \)  =  \(2^{4} \cdot 47^{2} \cdot 73^{2}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(3,\ 2^{4} \cdot 47^{2} \cdot 73^{2} ,\ ( 1 : 1.0 ),\ 1 )$

Euler product

\[\begin{aligned}L(s, E, \mathrm{sym}^{2}) = (1-47^{- s})^{-1}(1-73^{- s})^{-1}\prod_{p \nmid 27448 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.