Properties

Degree $3$
Conductor $25921$
Sign $1$
Motivic weight $2$
Arithmetic yes
Primitive yes
Self-dual yes

Related objects

Learn more

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  − 0.5·2-s − 3-s + 0.750·4-s − 0.200·5-s + 0.5·6-s + 0.142·7-s + 0.375·8-s + 2·9-s + 0.100·10-s + 0.454·11-s − 0.750·12-s + 1.76·13-s − 0.0714·14-s + 0.200·15-s − 0.312·16-s − 0.764·17-s − 18-s − 0.157·19-s − 0.149·20-s − 0.142·21-s − 0.227·22-s + 0.0434·23-s − 0.375·24-s + 0.239·25-s − 0.884·26-s − 2·27-s + 0.107·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 25921 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(25921\)    =    \(7^{2} \cdot 23^{2}\)
Sign: $1$
Arithmetic: yes
Primitive: yes
Self-dual: yes
Selberg data: \((3,\ 25921,\ (1:1.0),\ 1)\)

Particular Values

L(1/2): not computed L(1): not computed

Euler product

\(L(s, E, \mathrm{sym}^{2}) = (1-7^{- s})^{-1}(1-23^{- s})^{-1}\prod_{p \nmid 161 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.