Dirichlet series
$L(s, E, \mathrm{sym}^{2})$ = 1 | + 2-s + 0.333·3-s − 0.800·5-s + 0.333·6-s + 0.285·7-s + 0.111·9-s − 0.800·10-s − 0.909·11-s − 0.692·13-s + 0.285·14-s − 0.266·15-s + 16-s − 0.764·17-s + 0.111·18-s + 0.894·19-s + 0.0952·21-s − 0.909·22-s − 0.608·23-s + 1.43·25-s − 0.692·26-s + 0.0370·27-s − 0.689·29-s − 0.266·30-s − 0.870·31-s + 32-s − 0.303·33-s − 0.764·34-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 19881 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}\]
Invariants
Degree: | \(3\) |
Conductor: | \(19881\) = \(3^{2} \cdot 47^{2}\) |
Sign: | $1$ |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((3,\ 19881,\ (1:1.0),\ 1)\) |
Particular Values
L(1/2): not computed
L(1): not computed
Euler product
\(L(s, E, \mathrm{sym}^{2}) = (1-3^{- s})^{-1}(1-47^{- s})^{-1}\prod_{p \nmid 141 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line
Zeros not available.
Graph of the $Z$-function along the critical line
Plot not available.