Properties

Degree $3$
Conductor $121$
Sign $1$
Motivic weight $2$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  + 2-s − 0.666·3-s − 0.800·5-s − 0.666·6-s − 0.428·7-s + 1.11·9-s − 0.800·10-s + 0.0909·11-s + 0.230·13-s − 0.428·14-s + 0.533·15-s + 16-s − 0.764·17-s + 1.11·18-s − 19-s + 0.285·21-s + 0.0909·22-s − 0.956·23-s + 1.43·25-s + 0.230·26-s − 0.185·27-s − 29-s + 0.533·30-s + 0.580·31-s + 32-s − 0.0606·33-s − 0.764·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 121 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(121\)    =    \(11^{2}\)
Sign: $1$
Primitive: yes
Self-dual: yes
Selberg data: \((3,\ 121,\ (1:1.0),\ 1)\)

Particular Values

\[L(1/2, E, \mathrm{sym}^{2}) \approx 0.8933960461\] \[L(1, E, \mathrm{sym}^{2}) \approx 1.057599244\]

Euler product

\(L(s, E, \mathrm{sym}^{2}) = (1-11^{- s})^{-1}\prod_{p \nmid 11 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line