Properties

Degree $3$
Conductor $625200016$
Sign $1$
Motivic weight $2$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  − 0.666·3-s − 0.800·5-s + 0.142·7-s + 1.11·9-s − 0.636·11-s + 0.230·13-s + 0.533·15-s + 1.11·17-s + 0.0526·19-s − 0.0952·21-s + 0.565·23-s + 1.43·25-s − 0.185·27-s + 0.689·29-s − 0.870·31-s + 0.424·33-s − 0.114·35-s − 0.891·37-s − 0.153·39-s − 0.121·41-s − 0.162·43-s − 0.888·45-s + 0.0212·47-s + 0.0204·49-s − 0.745·51-s − 53-s + 0.509·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{2})=\mathstrut &\left(2^{4} \cdot 7^{2} \cdot 19^{2} \cdot 47^{2}\right)^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr=\mathstrut & \,\Lambda(1-{s}, E,\mathrm{sym}^{2})\end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(2^{4} \cdot 7^{2} \cdot 19^{2} \cdot 47^{2}\)
Sign: $1$
Primitive: yes
Self-dual: yes
Selberg data: \((3,\ 2^{4} \cdot 7^{2} \cdot 19^{2} \cdot 47^{2} ,\ ( 1 : 1.0 ),\ 1 )\)

Particular Values

L(1/2): not computed L(1): not computed

Euler product

\(L(s, E, \mathrm{sym}^{2}) = (1-7^{- s})^{-1}(1-19^{- s})^{-1}(1-47^{- s})^{-1}\prod_{p \nmid 100016 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.