Dirichlet series
$\zeta_K(s)$ = 1 | + 2·2-s + 3·4-s + 2·5-s + 4·8-s + 9-s + 4·10-s + 2·11-s + 2·13-s + 5·16-s + 2·18-s + 2·19-s + 6·20-s + 4·22-s + 2·23-s + 3·25-s + 4·26-s + 6·32-s + 3·36-s + 4·38-s + 8·40-s + 2·41-s + 6·44-s + 2·45-s + 4·46-s + 2·47-s + 49-s + 6·50-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda_K(s)=\mathstrut & 4889 ^{s/2} \, \Gamma_{\R}(s)^{2} \, \zeta_K(s)\cr =\mathstrut & \, \Lambda_K(1-s) \end{aligned}\]
Invariants
Degree: | \(2\) |
Conductor: | \(4889\) |
Sign: | $1$ |
Arithmetic: | yes |
Primitive: | no |
Self-dual: | yes |
Selberg data: | \((2,\ 4889,\ (0, 0:\ ),\ 1)\) |
Particular Values
\[\zeta_K(1/2) \approx -5.213653406\]
Pole at \(s=1\)
Euler product
\(\zeta_K(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Factorization
\(\zeta_K(s) =\) \(\zeta(s)\)\(\;\cdot\) \(L(s,\chi_{4889}(4888, \cdot))\)
Imaginary part of the first few zeros on the critical line