Dirichlet series
$\zeta_K(s)$ = 1 | + 2-s + 4-s + 2·5-s + 2·7-s + 8-s + 9-s + 2·10-s + 11-s + 2·14-s + 16-s + 18-s + 2·19-s + 2·20-s + 22-s + 3·25-s + 2·28-s + 32-s + 4·35-s + 36-s + 2·37-s + 2·38-s + 2·40-s + 2·43-s + 44-s + 2·45-s + 3·49-s + 3·50-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda_K(s)=\mathstrut & 44 ^{s/2} \, \Gamma_{\R}(s)^{2} \, \zeta_K(s)\cr =\mathstrut & \, \Lambda_K(1-s) \end{aligned}\]
Invariants
Degree: | \(2\) |
Conductor: | \(44\) = \(2^{2} \cdot 11\) |
Sign: | $1$ |
Arithmetic: | yes |
Primitive: | no |
Self-dual: | yes |
Selberg data: | \((2,\ 44,\ (0, 0:\ ),\ 1)\) |
Particular Values
\[\zeta_K(1/2) \approx -1.109960383\]
Pole at \(s=1\)
Euler product
\(\zeta_K(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Factorization
\(\zeta_K(s) =\) \(\zeta(s)\)\(\;\cdot\) \(L(s,\chi_{44}(43, \cdot))\)
Imaginary part of the first few zeros on the critical line